Convergence analysis of LMS filters with uncorrelated Gaussian data
نویسندگان
چکیده
Statistical analysis of the least mean-squares (LMS) adaptive algorithm with uncorrelated Gaussian datais presented. Exact analytical expressions for the steady-state mean-square error (mse) and the performance degradation due to weight vector misadjustment are derived. Necessary and sufficient conditions for the convergence of the algorithm to the optimal (Wiener) solution within a finite variance are derived. I t is found that the adaptive coefficient p , which controls the rate of convergence of the algorithm, must be restricted to an interval significantly smaller than the domain commonly stated in the literature. The outcome of this paper, therefore, places fundamental limitations on the mse performance and rate of convergence of the LMS adaptive scheme. Manuscript received October 1, 1983; revised February 29, 1984. A. Feuer i s with the Department of Electrical Engineering, Technion, Haifa, Israel. E. Weinstein is with the Department of Oceanic Engineering, Woods Hole Oceanographic Institute, Woods Hole, MA 02543, and also with the Department of Electronic Systems, Faculty of Engineering, Tel Aviv University, Israel.
منابع مشابه
Utilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework
Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...
متن کاملSpeech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering
This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...
متن کاملAdaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm
A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...
متن کاملSteady State Analysis of 2-D LMS Adaptive Filters Using the Independence Assumption
In this paper, we consider the steady state mean square error (MSE) analysis for 2-D LMS adaptive filtering algorithm in which the filter’s weights are updated along both vertical and horizontal directions as a doubly-indexed dynamical system. The MSE analysis is conducted using the well-known independence assumption. First we show that computation of the weight-error covariance matrix for doub...
متن کاملPerformance Analysis of Adaptive Filtering Algorithms for System Identification
The paper presents a comparative study of NLMS (Normalized Least Mean Square), NVSS (New Variable Step Size) LMS (Least Mean Square), RVSS (Robust Variable Step Size) LMS, TVLMS (Time Varying Least Mean Square) and IVSS (Improved Variable Step Size) LMS adaptive filter algorithms. Four performances criterion are utilized in this study: Minimum Mean Square Error (MSE), Convergence Speed, Algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Acoustics, Speech, and Signal Processing
دوره 33 شماره
صفحات -
تاریخ انتشار 1985